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Constrained information flows in temporal networks reveal intermittent communities
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Many real-world networks represent dynamic systems with interactions that change over time, often in
uncoordinated ways and at irregular intervals. For example, university students connect in intermittent groups
that repeatedly form and dissolve based on multiple factors, including their lectures, interests, and friends. Such
dynamic systems can be represented as multilayer networks where each layer represents a snapshot of the temporal
network. In this representation, it is crucial that the links between layers accurately capture real dependencies
between those layers. Often, however, these dependencies are unknown. Therefore, current methods connect
layers based on simplistic assumptions that do not capture node-level layer dependencies. For example, connecting
every node to itself in other layers with the same weight can wipe out dependencies between intermittent groups,
making it difficult or even impossible to identify them. In this paper, we present a principled approach to estimating
node-level layer dependencies based on the network structure within each layer. We implement our node-level
coupling method in the community detection framework Infomap and demonstrate its performance compared
to current methods on synthetic and real temporal networks. We show that our approach more effectively
constrains information inside multilayer communities so that Infomap can better recover planted groups in
multilayer benchmark networks that represent multiple modes with different groups and better identify intermittent
communities in real temporal contact networks. These results suggest that node-level layer coupling can improve
the modeling of information spreading in temporal networks and better capture intermittent community structure.
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I. INTRODUCTION

Temporal network representations of dynamic complex
systems allow researchers to describe changing interaction
patterns. Increasingly, high-resolution interaction data require
methods that can simplify and highlight important temporal
network structures. An important category of such structures is
highly intraconnected groups of nodes, so-called communities.
If the nodes represent individuals who alternate between
various roles in social temporal networks, the network’s com-
munities will repeatedly form and dissolve at multiple temporal
scales in an intermittent way. A simple approach to identify
intermittent communities is to first separate a temporal network
into a sequence of static snapshots, that is, a multilayer network
[1,2], then independently cluster each layer, and finally match
the communities across the layers to find the temporal com-
munities [3–8]. Other approaches, including three-way matrix
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factorization [9], time-node graphs [10], and stochastic block
models [9,11,12], can directly cluster the multilayer network
but are also unable to incorporate explicit dependencies be-
tween layers. To take into account such interdependencies,
some methods cluster multilayer networks using interlayer
links that represent specific causal or correlational dependen-
cies between the layers [13–16]. However, explicit interlayer
dependencies are often not available to researchers. More-
over, current approaches for estimating such dependencies by,
for example, comparing independently inferred community
structure between layers [17], using stochastic block modeling
[18], or applying link prediction through cross-validation [19],
consider only dependencies between entire layers. In contrast,
real systems with multiple and asynchronous recurrent events
generate dependencies between layers with varying strength
within layers. By ignoring such node-level dependencies, cur-
rent methods wash out important dependencies in multilayer
networks with intermittent communities at multiple temporal
scales.

In this paper, we present a flow-based method that first
couples node pairs in different layers based on the similar-
ity between their network neighborhood flow patterns and
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FIG. 1. Neighborhood flow coupling between a state node and
its sibling states in a multilayer network. (a) Interlayer coupling,
D

αβ
i , from the top left state node in layer 5 to all state nodes of the

same physical node. State nodes with more similar intralayer outlinks
couple more strongly, indicated by the stroke width. (b) Interlayer
links, P αβ

ij , are directed and connect a state node to neighbors of state
nodes of the same physical node, with weight proportional to the
coupling strength and the intralayer link weight of the neighbor node
[Eq. (1)].

then—based on the network structure within layers combined
with these node-level interlayer dependencies—identifies
temporal communities in the resulting multilayer network.
For a single node, nonoverlapping neighborhoods are not
coupled and identical neighborhoods are maximally coupled.
In a social network, this neighborhood flow coupling captures
how individuals typically share similar information in similar
social contexts. In this sense, neighborhood flow coupling
models causal dependencies across time. Finally, we adapt the
flow-based community detection algorithm Infomap [20,21] to
make use of this information. We demonstrate the usefulness
of neighborhood flow coupling for multilayer community
detection on benchmark networks. Additionally, we reveal and
visualize the temporal evolution of intermittent communities
in two temporal human contact networks [22,23]. While our
method targets intermittent communities in temporal contact
networks represented by multilayer networks, it nevertheless
outperforms other methods in standard benchmark tests on
multilayer networks.

II. METHODS

In complex networks, groups of nodes in which flow is con-
tained for a long time provide a useful notion of communities
[20,24]. Such communities also can provide straightforward
generalizations to multilayer networks [15]. We represent mul-
tilayer networks using physical nodes and state nodes. Physical
nodes represent system components, while state nodes, one for
each physical node and layer, represent constraints on flows
(see Fig. 1). Accordingly, we consider multilayer communities

to be groups of state nodes that capture flows for a significantly
long time. In this way, assigning a physical node’s state
nodes to different communities naturally results in overlapping
communities.

In real-world temporal networks, communities often form
and dissolve multiple times with a shorter presence than
absence [8]. From the perspective of the entire network, these
intermittent communities are often asynchronous in the sense
that each community forms and dissolves independently in
time relative to other communities. Examples of intermittent
communities include group voting trends in the U.S. Senate
[13], time-dependent sets of correlated financial assets [16],
social cores in contact networks [8], and modules of coherently
active brain areas [25]. Because nodes in these intermittent
communities are not able to share information across their
long absent times, since nodes are unlikely to be connected,
current methods for identifying communities with long flow-
persistence times cannot effectively capture the potential for
information transfer. A causal dependency across time requires
that interlayer link strengths represent the degree to which
information is likely to flow between state nodes in adjacent as
well as distant layers. Some existing methods indeed evaluate
dependencies between layers, but they do it by coupling
entire layers [17–19]. There are two important drawbacks to
this approach. First, coupling a physical node’s state nodes
across all layers generates a large number of links, resulting
in computational challenges. For example, in a network with
n nodes in t layers with average degree ⟨k⟩, we need ⟨k⟩t2n
links in addition to the within-layer links in order to represent
connections between state nodes. Second, for large networks
with many time slices and intermittent and asynchronous
communities, the uniform interlayer links can also “dilute”
community boundaries and aggregate distinct communities
(we will discuss this point in detail below). To counter the draw-
backs of uniform linking, we propose interlayer dependencies
at the node level. By forming state-node-specific interlayer
links, neighborhood flow coupling generates high-resolution
yet sparse multilayer networks that can capture intermittent
communities.

A. Neighborhood flow coupling

The goal of our flow-based approach is to enable interlayer
coupling based on the local structural properties of the multi-
layer network. Each layer’s intralayer link structure represents
the constraints on network flows at a given time or state of
the system. Specifically, we model the network flows in each
layer using a random walker that moves from state node to state
node guided by the outgoing intralayer links. Because the links
represent where flows can move, similar outgoing intralayer
link flows in two state nodes of a physical node suggest that
the state nodes represent similar states of the physical node. In a
social setting, for example, the same group of people may meet
again and take up where they left off last time they met. More
precisely, the more similar the within-layer flow patterns are,
the less the constraints would change and the less information
would be lost if the two state nodes were lumped together. We
use this information loss measure to couple layers: The less
information that is lost if the state nodes were combined, the
stronger the interlayer coupling between the state nodes.
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Neighborhood flow coupling based on the information loss
from merging state nodes is captured by the Jensen-Shannon
divergence. In detail, for neighborhood flow coupling between
physical node i’s state nodes in layers α and β, the state nodes’
normalized intralayer outlinks Pα

i and Pβ
i give their coupling

strength D
αβ
i ,
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where JSD(·,·) is the Jensen-Shannon divergence and H (·) is
the Shannon entropy. In a multilayer network with neighbor-
hood flow coupling, a random walker moves from state node to
state node within a layer guided by the intralayer links and, at
rate r , makes a transition to any layer, including the currently
visited layer, proportional to the intralayer link similarity
between the state nodes [see Fig. 1(a)]. We include interlayer
links to the same layer because they allow for generalizations
with complete layer information at rate 1 − r and no layer
information when the layer constraints are relaxed at rate r , as
if the layers were aggregated.

Neighborhood flow coupling disregards the temporal order-
ing of layers. However, for longer timescales or depending on
the research question at hand, layer coupling that depends on
temporal distance can be implemented. For example, Eq. (1)
can be scaled by a factor that depends on the temporal distance
between layers.

In any case, intralayer links connect state nodes to their
neighbors within the same layer, and interlayer coupling
connects state nodes of the same physical node in different
layers. For example, take a random walker at a state node of
physical node i in layer α, (i,α) for short. With probability
1 − r it remains in the same layer and moves to state node (j,α)
with probability proportional to the intralayer link weight W α

ij .
With the remaining probability r it relaxes the layer constraint,
switches to any layer β proportional to the interlayer coupling
strength D

αβ
i , and moves to state node (j,β) proportional to

the intralayer link weight W
β
ij . Consequently, with intralayer

out-strength s
β
i =

∑
j W

β
ij and interlayer out-strength Sα

i =
∑

β D
αβ
i of state node (i,α), the transition probabilities as a

function of r are

P
αβ
ij (r) = (1 − r)

W
β
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where δαβ is the Kronecker delta function. Therefore, relaxing
the layer constraint means that the random walker loses
memory of which layer it is currently visiting and instead
follows the outgoing links of any state node of the same
physical node. With uniform interlayer coupling, relaxing the
layer constraint corresponds to a step on the fully aggregated
network. However, neighborhood flow coupling takes advan-
tage of higher-order information in the multilayer network that
enables longer persistence times in intermittent communities
[see Fig. 1(b)].

B. Neighborhood flow coupling and the map equation

To apply neighborhood flow coupling in the context of
community detection, we use the map equation framework
for multilayer networks [15,21]. For our purposes, the map
equation framework comes with two advantages. First, the
map equation is flow-based and directly integrates state-node-
specific interlayer flows, as it balances intralayer and interlayer
flows by relaxing the intralayer constraints with an interlayer
relax rate. Second, the map equation naturally clusters coupled
state nodes with similar intralayer links in the same community,
as it assigns state nodes of the same physical node and
community to the same codeword to capture the fact that they
represent the same physical object. Therefore, the flow-based
and information-theoretic nature of the map equation is a good
fit with neighborhood flow coupling.

In detail, for a two-level modular description of flows from
node to node in m communities, one index codebook contains
the community-enter codewords and m module codebooks
contain the node-visit and community-exit codewords within
modules. Each codebook’s average codeword length is given
by the Shannon entropy of their rates of use, Q for enter
codewords with total rate of use q!, and Pj for codewords
in community j with total rate of use pj!. For node partition
M, the map equation therefore takes the form

L(M) = q!H (Q) +
m∑

j=1

pj!H (Pj ). (4)

Applied to a possibly weighted and directed network, Infomap
searches for the node partition M that minimizes the map
equation and reveals the most modular regularities in the
network flows.

The map equation remains the same for multilayer net-
works, with one important generalization: when state nodes of
the same physical node are assigned to the same community,
they are assigned a common code word derived from their
total visit rate. This coding scheme captures the very essence
of multilayer networks, that all state nodes of the same physical
node represent the same physical object [15].

We have implemented the neighborhood flow cou-
pling in the Infomap software package available at
[26]. Neighborhood flow coupling is activated with the
flag --multilayer-js-relax-rate. For memory effi-
ciency or for encoding temporal ordering of layers, in-
terlayer links can be thresholded based on the Jensen-
Shannon divergence and temporal distance between lay-
ers with the flags --multilayer-js-relax-limit and
--multilayer-relax-limit, respectively.

Neighborhood flow coupling is useful beyond Infomap and
can be used with other community detection frameworks, for
example, multilayer modularity optimization [13]. In general,
the high density of interlayer links between similar layers will
make it easier to identify intermittent communities. Moreover,
the basic principle of neighborhood flow coupling extends
beyond community detection and can be useful for capturing
spreading processes in multilayer networks when interlayer
coupling information is absent.
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FIG. 2. Coupling strength as a function of overlap. (a) A concep-
tual illustration of two identical fully connected communities of size
N = 52 that reside in adjacent layers and overlap by δN = 20 nodes.
Overlapping nodes are in blue, and couplings inside each layer are
omitted for the purpose of illustration. (b) Analytical layer switching
probability for full and neighborhood flow coupling as functions of
overlap computed for r = 1 and N ≫ 1. The inset shows the full
range from 0 to 1.

III. RESULTS

We first validate the performance of Infomap with neighbor-
hood flow coupling on benchmark networks with multilayer
structure. Then we identify temporal communities in two
face-to-face contact networks.

A. Performance tests on benchmark networks

We compare neighborhood flow coupling with other inter-
layer coupling schemes on three types of multilayer benchmark
networks to test each method’s ability to handle overlapping
community structure, recover intermittent communities in in-
creasingly sparse multilayer networks, and retain flows within
intermittent communities. We compare neighborhood flow
coupling (NFC) with full coupling (FC), adjacent coupling
(AC), and no coupling (NC). Full coupling with uniform
coupling across layers and no coupling with only the intrinsic
coupling from the multilayer coding scheme are extreme cases
of neighborhood flow coupling, when the structural similarity
in Eq. (1) is either 1 or 0 across all state nodes of the same
physical node [15]. Adjacent coupling with uniform coupling
strength to the nearest layers is an appealing method for
gradually changing communities but cannot capture intermit-
tent communities. These alternative coupling methods provide
references to compare and contrast the results of neighborhood
flow coupling.

1. Community overlap

In real networks, such as face-to-face networks, commu-
nities are rarely completely nonoverlapping but share some
members. Therefore, we investigate how neighborhood flow
coupling handles overlap compared to full coupling. We begin
by considering the simplest possible example: two identical,
fully connected communities of size N that overlap by a
fraction δ [Fig. 2(a)]. In this network, a random walker
traversing the network occupies a node i inside the overlap with
probability δ and performs a relax step with probability r . Con-
sequently, the random walker switches layer with probability

P ↔ = δr
D

αβ
i

D
αβ
i + 1

. (5)

FIG. 3. Full coupling merges communities at lower overlap.
(a) Schematic illustration of two layers of cliques with variable
overlap. (b) The probability that Infomap with different coupling
schemes merges two communities in separate layers as a function
of their node overlap. (c) Same as (b) but for sparser networks, in
which all but a fraction of ρ = 0.25 links are randomly removed.

A higher P ↔ corresponds to stronger coupling between the
two communities and increased preference for classifying
the two as a single community. For full or adjacent coupling,
D

αβ
i = 1 and P ↔

FC = 1/2δr . For neighborhood flow coupling,
D

αβ
i from (1) for a node in the overlap yields

P ↔
NFC = δr

(δN − 1)
(δN − 1) + (N − 1)

. (6)

That is, the probability of switching layers is the fraction of
time steps that a random walker can switch, δr , multiplied by
the probability that a relax step will result in a layer switch
(which is the number of nodes the walker can reach in the
other layer divided by the total number of nodes the walker
can reach when inside the overlap). Note that when N ≫ 1 the
probability of switching layers is only a function of δ and r .

Figure 2(b) shows P ↔ as a function of δ for full and
neighborhood flow coupling at relax rate r = 1 and N ≫ 1.
This test shows that the layer switching probability can differ
significantly in the important range δ ∈]0,0.5], suggesting that
neighborhood flow coupling has a lower tendency to merge
overlapping communities compared to both full coupling and
adjacent layer coupling.

To compare neighborhood flow coupling and full coupling
in a more complex scenario, we measure the threshold of over-
lap at which the two methods collapse overlapping communi-
ties. First, we construct a two-layer network benchmark model
with 500 physical nodes partitioned into 50 communities of
uniform size 10, where the communities in each layer differ
by some number of random edge swaps [Fig. 3(a)]. Then,
using Infomap with both coupling schemes on 1000 network
realizations, we record the overlap for each pair of communities
in different layers and whether or not Infomap merges them
[Fig. 3(b)]. We see that full coupling merges communities
more aggressively than neighborhood flow coupling, in some
cases even when they only overlap by two nodes. Conversely,
Infomap with neighborhood flow coupling requires substantial
overlap before it merges two distinct communities.

In real-world networks, communities are sometimes
sparsely linked internally. Since the neighborhood flow
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coupling considers overlap in internal link structure rather
than in nodes, partly overlapping communities will merge
with lower probability when the communities are sparser.
For example, with all but a fraction ρ = 0.25 of the edges
randomly removed from each community, the merge probabil-
ity decreases more for neighborhood flow coupling than full
coupling [Fig. 3(c)]. In networks with few layers, the network
under study and the research question at hand should determine
which coupling method is best.

2. Intermittent communities

In networks with many layers, communities may persist
over some period of time, then vanish and reemerge again by
activating the same subset of nodes with similar within-group
link structures. When the goal is to identify such intermittent
communities, it is important to avoid inadvertently merging
community that are in fact separate. Therefore, we compare
how different coupling schemes perform with respect to detect-
ing intermittent communities in increasingly sparse multimode
benchmark networks [15].

First, we generate T independent network layers, which
we refer to as modes, with the LFR benchmark model [27].
Each mode has 512 nodes, average degree 8, mixing coefficient
0.05, and power-law community-size and degree distributions
with exponent 3 (see Appendix C for more details). From each
mode we independently sample L network layers that include
links from their mode with probability 1/L. Each multilayer
benchmark network thus comprises T × L layers, with T inde-
pendent sets of L dependent layers, as schematically illustrated
in Fig. 4(a). With increasing L and sparser communities, the
challenge is to detect the communities planted in each mode
and distinguish between communities from different modes.

To measure performance, we compute the adjusted mutual
information (AMI) [28] between the predicted and true state
node labels. We first show that neighborhood flow coupling is
less sensitive to variations in the relax rate [Fig. 4(b)]. The no
coupling method is independent of the relax rate and serves as a
performance baseline. For adjacent coupling, the performance
increases with the relax rate because this coupling takes
advantage of the ordered layers and completes information
in sparse layers. However, when shuffling the layers, this
advantage vanishes and the performance drops significantly.
Full coupling has a narrow performance optimum, and the
performance drops to zero around r = 0.7 when the strong
interlayer coupling causes Infomap to label the whole network
as one community. Neighborhood flow coupling is more stable
and performs best with a relax rate between 0.15 and 0.7 for
this type of multilayer network. If not stated otherwise, we use
r = 0.25 for all analyses.

For all types of coupling, performance depends on the
number of network modes. On single-mode multilayer net-
works, full coupling achieves the highest score because uni-
form interlayer coupling maximally aggregates the dependent
layers [Fig. 4(d)]. When the number of samples per mode
increases, the networks become sparser and the probability
of finding high-similarity neighborhood flows decreases. As a
result, neighborhood flow coupling converges to no coupling.
However, neighborhood flow coupling handles many samples
per mode and multiple modes better than any other coupling

FIG. 4. Neighborhood flow coupling captures intermittent over-
lapping communities in sparse multilayer networks. (a) Illustration of
benchmark network for measuring performance in sparse networks
with overlapping intermittent communities in T network modes and
L sampled layers per mode. (b) Performance of all coupling methods
measured by the AMI between the recovered and true partitions as a
function of the relax rate r . Per definition, no coupling does not depend
on the relax rate. (c) Performance test for L = 5 layers per mode and
increasing number of network modes T . (d, e) Performance test for
fixed number of network modes T = 1 and T = 10, respectively,
and increasing number of increasingly sparse sampled layers L per
network mode. For more than one network mode, neighborhood flow
coupling stands out as the best coupling method.

scheme. For example, in the 10-mode multilayer networks
with overlapping communities, neighborhood flow coupling
performs better than full coupling also for many samples per
mode [Fig. 4(e)]. In this case, both coupling schemes perform
better for a few samples per mode than only one, because they
force interlayer links between spuriously overlapping layers.
This behavior suggests that an adaptive relax rate based on the
absolute similarity between layers may give even better results.
Nevertheless, the performance of neighborhood flow coupling
remains stable for much higher numbers of network modes
[Fig. 4(c)]. While adjacent coupling performs on par with
neighborhood flow coupling in this scenario, its performance
relies on the layer order. When we shuffle the layers, adjacent
coupling can no longer benefit from similarities between
adjacent layers and performs as bad as no coupling. This result
highlights that adjacent coupling cannot detect communities
with temporal interruptions. Overall, while there is room for
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FIG. 5. Neighborhood flow coupling amplifies flow persistence in
communities. (a) Schematic benchmark network for testing network
flow persistence in planted communities. Two identical signal layers
sandwich a noise layer with varying overlap, with the signal layers
set by conversion coefficient λ, from identical at λ = 0 (left) to
independent at λ = 1 (right). (b) The average AMI between the
identified partitions in the signal and noise layers decreases as they
disentangle. (c) The fraction of total network flows captured by nodes
in the signal layers increases as the signal and noise layers disentangle
for neighborhood flow coupling but is constant at two-thirds of the
total flow for the uniform coupling methods. We use relax rate r = 1
for neighborhood flow coupling to maximize interlayer flows and
emphasize the effect.

further improvement, neighborhood flow coupling stands out
as the best method for detecting intermittent communities.

3. Flow persistence

We have developed the neighborhood flow coupling to
constrain flows within structurally similar overlapping regions
of a network. To explore this feature, we use a multilayer
benchmark network model consisting of two identical signal
layers with known clusterings at both sides of a noise layer
that, to a tunable degree, is more or less independent of the
signal layers [Fig. 5(a)]. We generate layers with the same LFR
benchmark model as in the previous section. We introduce a
tuning parameter λ ∈ [0,1] such that the noise layer contains
ne(1 − λ) randomly selected edges from the signal network and
likewise neλ from another network generated independently
following the same procedure. By tuning λ from 0 to 1, we
can gradually convert the noise layer from the signal network
copy to an independent network [29]. We can now test how
well different coupling methods handle interference from the
noise layer by measuring the decrease in average adjusted
mutual information between the identified signal and noise
layer partitions as we increase λ. To emphasize the effects, we
use relax rate r = 1.

Neighborhood flow coupling and no coupling are robust to
interference from irrelevant layers. At some level of conver-
sion, noise and signal layer communities should be considered
independent of each other, and the AMI between signal and

noise layers should go to zero. No-coupling gives independent
labels to the noise layer after 60% conversion, and neigh-
borhood flow coupling gives independent labels after 100%
conversion. Full and adjacent coupling suffer from interference
with the noise layer even when it is fully converted and thus in-
dependent of the signal layers [Fig. 5(b)]. The strong coupling
between signal and noise layers for these methods induces
interlayer flows in spurious communities. Obviously, the no
coupling method is immune to such interference and therefore
is unable to pick up actual interlayer coupling in intermittent
communities (Fig. 4). In contrast, neighborhood flow coupling
is able to both avoid interference from irrelevant structures and
pick up information from intermittent communities.

Neighborhood flow coupling can retain flows in intermittent
communities. The proportion of flow inside the signal layers
explains why neighborhood flow coupling outperforms full and
adjacent coupling. In the three-layer example, for any uniform
coupling scheme—be it full, adjacent, or no coupling—each
layer carries one-third of the total flow, independent of λ.
Therefore, two-thirds of the total flow in the signal layers forms
a baseline. For neighborhood flow coupling, however, this
fraction increases as λ approaches 1 and the signal and noise
layers disentangle [Fig. 5(c)]. The adaptive coupling reinforces
flows inside the two signal layers together and prevents flows
from leaking to the noise layer. As a result, neighborhood
flow coupling accentuates structures with long flow persistence
times across layers and makes it possible to detect intermittent
communities in multilayer networks.

B. Understanding real-world temporal contact networks

We now apply multiplex Infomap using neighborhood flow
coupling, full coupling, adjacent coupling, and no coupling
schemes to two empirical temporal contact networks. We
represent each data set as a multilayer network and aggregate
links over 10-minute intervals in each layer. The first network
represents contact events during working hours (approximately
8 a.m. to 6 p.m) between employees in a workplace environ-
ment over two weeks [22]. In this network there are n = 92
physical nodes, e = 2.91 × 103 intralayer links, and t = 575
nonempty layers, and the average intralayer node degree
is ⟨k⟩ = 0.110. The second network arises from Bluetooth
signal connections between personal smartphones of freshmen
university students, also over two weeks [23] (n = 636, e =
1.27 × 105, t = 600, ⟨k⟩ = 0.665). In the university dataset,
links are tracked during a special study period when each
student attends the same course every day. The students may
meet anytime during the 24 h of the day, but to simplify the
comparison to the workplace network, we consider only links
that occur during working hours (8 a.m.–4 p.m.). Thus, both
networks are cropped to this timeframe, so t = 480. We start
by analyzing the interlayer link structure that neighborhood
flow coupling produces. In particular, we are interested in
understanding the sparsity of the representations that the
method creates, compared to other methods. We then evaluate
the performance of Infomap resulting from each coupling
scheme by measuring overlap, size, and self-similarity over the
time of communities that each method finds. There is no ground
truth to measure performance against, so we focus our analysis
on showing that neighborhood flow coupling strikes a balance
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FIG. 6. Properties of communities in real-world networks. Each
column corresponds to a separate dataset. (a), (b) The number of new
communities on each day, pnew, in the solutions for each coupling
scheme. (c), (d) Average community self-similarity over time. (e), (f)
Distribution of node community assignment entropy, S, as a measure
of community overlap. (g), (h) Community size distributions.

between allowing information to flow between all layers—the
strength of full coupling—and not mixing unrelated contexts—
the strength of no coupling. Finally, we explore each network
by visualizing the neighborhood flow coupling community
detection solution.

1. Neighborhood flow coupling finds communities that
are highly self-similar

We know from the literature that the networks under
study contain intermittent communities [8,30]. Therefore these
networks are useful in order to better understand each different
coupling method’s ability to capture intermittent community
structure. Due to the frequent daily reemerging of communi-
ties, a method that couples temporally distant layers should
cause the rate of new communities discovered on each day,
pnew, to decline over time. This is indeed the case for full
coupling and neighborhood flow coupling [Figs. 6(a)–6(b)].
Full coupling drives pnew close to zero, which is unrealistic as
we should expect some degree of exploration to take place. The
reason for this behavior is likely the fact that new communities
are merged with previous, slightly overlapping communities.

For neighborhood flow coupling, intermittent communities are
appropriately recognized each day, while a significant fraction
of new configurations is given new labels.

Knowing that communities are indeed successfully redis-
covered each day, we now seek to understand how self-similar
intermittent communities are between days of (re)discovery.
A good detection algorithm should partition the network such
that each reappearance of a community is highly self-similar
to its other appearances. We measure the similarity between
each temporal community to itself on the most recent previous
day as the cosine similarity between the unnormalized 24 h ag-
gregate distributions of member nodes, and plot the similarity
distribution over time as their means inside the 95% confidence
intervals. It is only relevant to measure self-similarity for full
and neighborhood flow coupling, since only those two methods
are able to capture reoccurring communities. In both networks,
neighborhood flow coupling results in, on average, higher
community self-similarity than full coupling does [Figs. 6(c)
and 6(d)]. This difference is more pronounced in the university
network because the structures are larger. In the case of full
coupling, large communities are frequently split into smaller
ones that are rarely detected.

2. Full coupling solutions tend to merge overlapping communities

We measure the distribution of node entropy, P (S), and
the distribution of community size, P (ϵ), in each network.
We compute the node entropy as S =

∑
i ci log ci where ci is

the distribution over time spent in community i for a given
node. Intuitively, if the average node entropy is high, nodes are
detected as frequently being in different communities, meaning
that communities must overlap on many nodes. Full coupling
results in low node entropy and large communities [see
Figs. 6(c)–6(e)]. In conjunction with our previous observation
that full coupling leads to unrealistically low values of pnew,
this is a strong indication that it causes Infomap to merge
communities that overlap in different layers.

For both networks, the pnew curve for neighborhood flow
coupling is similar to full coupling but with more new commu-
nities emerging each day. In the workplace network, we note
that there are almost as many new communities discovered
on the second day as there are on the first. We can explain
this with the observation that the workplace dataset contains
groups that are scheduled to meet every other day, and, as such,
we should expect some of those to start on the second day.
While neighborhood flow coupling captures this nuance, full
coupling does not. In the university network, neighborhood
flow coupling identifies fewer and fewer communities as
the week progresses, with the exception of Fridays, where
relatively more new communities form. This nuance is not
captured by full coupling. These results further support the
concept that full coupling results in mergers of overlapping
communities due to interlayer links that connect them via the
nodes they overlap on.

3. Visualization of temporal communities

We visualize the temporal expansion and contraction of
communities found by Infomap with neighborhood flow layer
coupling in each network, as horizontal “strips” of varying
height [31]. Figure 7 displays a subset of the communities
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FIG. 7. Temporal communities detected by Infomap with neigh-
borhood flow coupling. Each horizontal track represents a community
and its varying height represents the number of active nodes over
time. (a) Partition of the workplace network. Height to scale with (b).
(b) Partition of the university network. At its tallest point, the largest
community (top purple, 10 am) has 22 active members.

discovered in each network (vertical position is arbitrary).
There are clear differences between the community structure
of the two networks. The university network gives rise to large
structures that persist over long periods of time, while the
workplace communities are significantly more intermittent,
lasting on the order of tens of minutes. Community sizes
agree with our insight from Figs. 6(g) and 6(h). In the
university network, some are large, corresponding to students
attending lectures, some are midsized, corresponding to work-
groups and small lectures, and some are small, corresponding
to two-to-four-person gatherings. In the workplace network,
communities mostly consist of a few people and occasionally
are larger around lunch, but never on a scale similar to the
university, as we should expect. We provide an interactive
version of Fig. 7 [32], which offers further intuition about
these networks and the effects of neighborhood flow coupling
to the observed structure. With these levels of intermittent
communities—here observed in particular for the workplace
network but also strongly present in the university network at
a daily rate—it is clear that neighborhood flow coupling is a
good choice for estimating layer interdependency.

IV. CONCLUSION

Our experiments suggest that connecting state nodes across
layers in multilayer networks based on the similarity between
their network neighborhood flows has multiple benefits over
uniform entire-layer coupling approaches. For example, in
series of time-stamped face-to-face interaction events repre-
sented as multilayer networks, neighborhood flow coupling
captures natural constraints on information flows such that
flows move freely only within and between similar commu-
nities across layers. As a result, Infomap is able to identify
intermittent communities with long flow persistence times
and recognize spuriously overlapping communities as separate
entities. In contrast, existing uniform entire-layer approaches
either fail to capture whole communities that are intermit-
tent across temporal layers or collapse spuriously overlap-
ping communities into single communities. Furthermore, we
demonstrate that neighborhood flow coupling results in multi-
layer network representations that are orders of magnitudes
sparser in typical real-world networks with corresponding

computational gains. This computational gain allows us to
analyze and identify intermittent communities in temporal
networks over longer times or higher resolution. Consequently,
neighborhood flow coupling opens new avenues for temporal
network analysis.
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APPENDIX A: INTERLAYER SPARSITY

To couple state nodes, neighborhood flow coupling requires
that the network structure around state nodes be similar. This
similarity is not required by full coupling, which couples
the state nodes of each physical node regardless of local
structure. In temporal networks, there are often many state
node pairs that have no structural similarity, because they can
participate in nonoverlapping communities at different times.
With neighborhood flow coupling, this results in network
representations with sparse interlayer link structure compared
to full coupling, where the interlayer network is always dense.
In this Appendix, we investigate the degree to which neigh-
borhood flow coupling reduces the size of the network and
thus the memory footprint. We measure the density reduction
in relation to the full coupling density, which is always one,
and compare to the adjacent coupling density. Furthermore,
we analyze how density varies with layer interdependence for
neighborhood flow coupling, as we reason that this must be an
important factor.

First, we consider sparsity in synthetic networks with inde-
pendent layers. We define interlayer density, S, as the ratio of
realized to possible interlayer links. Per definition, it is always
the case that SFC = 1 and SNC = 0. If layers are independent,
we can derive SAC = 2/t by dividing the expected number of
links from adjacent coupling with the expected number of links
from full coupling. For t = 600 (corresponding to two weeks
of working hours in 10-minute time bins), SAC = 3.3 × 10− 3.
SNFC can be approximated as the probability that two state
nodes have at least one link in common:

SNFC(⟨k⟩,n) = 1 − P

(
0,

⟨k⟩2

n

)
= 1 − e− ⟨k⟩2/n, (A1)

where P (0,θ ) is the function value in 0 of a Poisson distribution
with average θ equal to the expected number of shared links
between two state nodes in independent layers ⟨k⟩2/n. For a
network with similar statistics to the university network (n =
636, ⟨k⟩ = 0.665), Eq. (A1) gives SNFC = 7.0 × 10− 4. In real
temporal networks, however, we observe that the interlayer link
structure is more dense because there is significant dependence
between layers. The estimations presented here therefore serve
only as random network baselines that we can compare with.
For the university network, where the possible number of
interlayer links is 7.11 × 107, we observe SNFC = 0.680 and
SAC = 0.005, and for the workplace network, where the
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FIG. 8. Interlayer sparsity depends on layer interdependence.
The density of interlayer links SNFC created by neighborhood flow
coupling decreases as the layers in a multilayer network become
more independent (increasing λ). The rate at which density decreases
depends on the average degree of state nodes ⟨k⟩. Sparse intralayer
link structure, corresponding to low ⟨k⟩, leads to sparser interlayer
link structure.

possible number of interlayer links is 4.33 × 105, SNFC =
0.299 andSAC = 0.012. The large increase inS that we observe
for the empirical networks reveals that neighborhood flow
coupling is very sensitive to interdependence between layers.

We now test how sensitive interlayer sparsity resulting
from neighborhood flow coupling is to layer interdependence,
using a simple experiment similar to the approach taken in
Sec. III A 3. We create an Erdős-Rényi graph with n =
1000 and variable ⟨k⟩. We create a two-layer network where
both layers are copies of this network, such that the layer
independence λ, which we measure as the average Jensen-
Shannon divergence across all pairs of state nodes, is zero.
We then gradually convert the second layer to an independent
network, generated by the same process, using edge swaps,
while measuring SNFC versus λ. When the second layer is fully
converted, the two layers are maximally independent and λ =
1. The experiment shows, first, that the relationship between
SNFC and λ is nonlinear. Second, we observe that a sparse
intralayer structure (low ⟨k⟩) leads to a sparser interlayer link
structure, increasingly so when layers are independent (Fig. 8).

Thus neighborhood flow coupling offers significant gains
in memory efficiency relative to full coupling, particularly in
sparse multilayer networks.

APPENDIX B: ROBUSTNESS TO RELAX RATE

In the absence of an adaptive relax rate, the problem at
hand should decide what relax rate r to use. In general, for full
coupling, r must be large enough to facilitate flow between
layers yet small enough to contain information inside the layer
communities. For neighborhood flow coupling, this heuristic
does not apply, because interlayer links are established only
between structurally similar regions of the network. At the
same time, r still controls the amount of interlayer flow in the
network. If r = 0, information cannot flow between layers, and
if r = 1, important layer information may be diluted.

The optimal relax rate r should allow Infomap to dis-
cover communities that repeat in different layers. To test this
criterion, we perform a simple experiment that starts with a
multilayer network, selects a random layer, and appends a copy
of it to the end of the network. For a range of r values, we then
measure the proportion of nodes in the copied layer to which

FIG. 9. Neighborhood flow coupling is highly robust to variations
in r . The plots illustrate the similarity of a community detection
solution using r = 0.25 with solutions obtained from different relax
rates. The high values for neighborhood flow coupling in both
networks (a) and (b) demonstrate its high robustness to r variability
compared to full coupling.

Infomap assigns the same label as in the original layer. We
perform this test on the university and the workplace networks
for neighborhood flow and full coupling, and find that both
coupling schemes give perfect labeling of all copied nodes for
all values of r except r = 0. While this result does not reveal
a performance optimum for r , it shows that the map equation
can effectively capture layer interdependences.

The results should not be sensitive to the exact choice of
the relax rate. We demonstrate the robustness by clustering a
network for a range of relax rates and comparing each solution
to the solution for r = 0.25, with the multiplex AMI as a
performance measure. If robustness is high, all solutions should
have a high AMI with this reference solution. Performing this
test for both networks, we find that neighborhood flow coupling
solutions are significantly more robust to varying r than full
coupling solutions. Neighborhood flow coupling is particularly

FIG. 10. Real and synthetic networks. (a) Simple network of
aggregated links between 8 a.m. and 4 p.m. in the university dataset.
The number of nodes is 496 and the mean degree is 9.0. (b) Synthetic
LFR network realization with 512 nodes, average degree 8.4, and
fitted degree distribution power law exponent 3.8.
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robust in the domain r > 0.25. The similarity decays faster
when r < 0.25 and goes to zero for r = 0, which demonstrates
that, while robust to r , Infomap with neighborhood flow cou-
pling allows for detecting smaller communities. In summary,
a broad spectrum of relax rates gives similar solutions for
Infomap with neighborhood flow coupling (Fig. 9).

APPENDIX C: BENCHMARK NETWORKS

For transferring results from benchmark networks to real
networks, the benchmark networks should resemble the real
networks. However, real networks come in a great variety, and
benchmark networks cannot accurately mimic all of them. To
find meaningful model parameters for the LFR benchmark net-
works [27], we consider individual workdays of the university
network as aggregated simple graphs (interactions between 8

a.m. and 4 p.m.) and observe that the number of nodes typically
lies between 400 and 500 and that the mean degree is in the
range 6–12. Figure 10(a) shows an example of one such real
network and its degree distribution. We generate synthetic
networks with the LFR implementation made available online
[33], with input parameters N = 512 (number of nodes), k = 8
(average degree), maxk = 16 (maximum degree), µ = 0.05
(mixing), t1= t2= 3 (degree and community-size power-law
distribution exponent), and maxc= 24 (maximum community
size). While there is no guarantee that the statistics of individual
resulting networks fully respect the input parameters, we
observe that realized degree and power law exponents deviate
only marginally (standard deviations 0.1 and 0.8, respectively).
Figure 10(b) shows an example of a synthetic network that
results from these parameters.
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